Optimal Base Wavelet Selection for ECG Noise Reduction Using a Comprehensive Entropy Criterion
نویسندگان
چکیده
The selection of an appropriate wavelet is an essential issue that should be addressed in the wavelet-based filtering of electrocardiogram (ECG) signals. Since entropy can measure the features of uncertainty associated with the ECG signal, a novel comprehensive entropy criterion Ecom based on multiple criteria related to entropy and energy is proposed in this paper to search for an optimal base wavelet for a specific ECG signal. Taking account of the decomposition capability of wavelets and the similarity in information between the decomposed coefficients and the analyzed signal, the proposed Ecom criterion integrates eight criteria, i.e., energy, entropy, energy-to-entropy ratio, joint entropy, conditional entropy, mutual information, relative entropy, as well as comparison information entropy for optimal wavelet selection. The experimental validation is conducted on the basis of ECG signals of sixteen subjects selected from the MIT-BIH Arrhythmia Database. The Ecom is compared with each of these eight criteria through four filtering performance indexes, i.e., output signal to noise ratio (SNRo), root mean square error (RMSE), percent root mean-square difference (PRD) and correlation coefficients. The filtering results of ninety-six ECG signals contaminated by noise have verified that Ecom has outperformed the other eight criteria in the selection of best base wavelets for ECG signal filtering. The wavelet identified by the Ecom has achieved the best filtering performance than the other comparative criteria. A hypothesis test also validates that SNRo, RMSE, PRD and correlation coefficients of Ecom are significantly different from those of the shape-matched approach ( 0.05 , two-sided ttest). OPEN ACCESS Entropy 2015, 17 6094
منابع مشابه
Fault diagnosis of gearboxes using LSSVM and WPT
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملStudying Influence of Preheating Conditions on Design Parameters of Continuous Paint Cure Ovens
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملDetecting pitting corrosion and its severity using wavelet entropy in electrochemical noise measurement
Entropy as a measure of uncertainty was used to represent the results of the wavelet technique in electrochemical noise analysis. The experimental signals were obtained by recording the electrochemical potential and current noise of 7075 aluminum alloy in 3.5% NaCl solution. The electrochemical potential and current noise were decomposed into 16 levels using Daubechies wavelets. Wavelet output ...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015